Mass Transfer Characteristics through Alumina Membranes with Different Pores Sizes and Porosity
DOI:
https://doi.org/10.46328/ijonest.71Abstract
Different membranes covering the macroporous to nano-pororous range and having different porosities have been used to study the mass transfer of methane and carbon dioxide single gases. The effect of flow parameters on the transport mechanisms through porous membranes were reviewed in detail. The characteristics of gas transport through the macroporous, microporous, and nano-porous membranes were investigated with several gas diffusion models in the range of 20–100 ◦C and at pressure differences ranging from 0.2 to 3 bar. The experimental gas permeation data of the membranes were analyzed using the Darcy flow model. The results clearly showed good agreement between the model analysis and the experimental data. The experimental data showed that the permeation followed a parallel flow model in which the behavior of gases was governed by viscous and Knudsen diffusion, although to varied degrees. Permeation of the gases through each membrane varies considering the viscosity of the gases at the same temperature. Furthermore, the membranes followed the configurational diffusion model in which the permeance increased with increasing pressure and decreasing temperature. For the gas flow measurements through macroporous and nano-porous membranes with diameters ranging from 6000nm to 15nm, the results indicate that the experimental flux agrees well with the calculated (model) flux through which gas flows from the bulk stream in the shell side to the membrane outer surface where viscous flow and Knudsen diffusion coexist. The study shows that experimental flux is larger than Knudsen diffusion, and the contribution of Knudsen diffusion to the experimental flux increases with the decrease in the diameter. On the other hand, the effects of gas slippage are considerable as gas velocity near the wall is higher than zero. The slip length effects are inversely proportional to pore size and with driving pressure.References
Ogunlude, P., Abunomah, O., Hashim, I., Aisueni, F., Ogoun, E., Antwi, S., Ramalan, M., Williamwest, T., Sukki, F. M., & Gobina, E. (2022). Mass Transfer Characteristics through Alumina Membranes with Different Pores Sizes and Porosity. International Journal on Engineering, Science and Technology (IJonEST), 4(1), 99-123.
Downloads
Published
Issue
Section
License
Articles may be used for research, teaching, and private study purposes. Authors alone are responsible for the contents of their articles. The journal owns the copyright of the articles. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of the research material.
The author(s) of a manuscript agree that if the manuscript is accepted for publication in the International Journal on Engineering, Science and Technology (IJonEST), the published article will be copyrighted using a Creative Commons “Attribution 4.0 International” license. This license allows others to freely copy, distribute, and display the copyrighted work, and derivative works based upon it, under certain specified conditions.
Authors are responsible for obtaining written permission to include any images or artwork for which they do not hold copyright in their articles, or to adapt any such images or artwork for inclusion in their articles. The copyright holder must be made explicitly aware that the image(s) or artwork will be made freely available online as part of the article under a Creative Commons “Attribution 4.0 International” license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.