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Abstract: Human cognition and consciousness are perhaps the most confounding mystery. Somehow it has a 

linkage to the process of learning and storage of short-term and long-term memory in the form of knowledge. 

This paper examines a brief background of early models in learning presented by Atkinson and Shriffrin (1965) 

and related stochastic models utilizing probability functions. Each of these learning models capture certain 

facets of the learning process but are ineffective in describing the physical basis in which learning occurs. For 

this reason, this paper explores analogous mathematical models based on reaction kinetics that have been shown 

to represent chemical reactions found in nature. Six learning models are presented of unitary, binary, reversible 

binary, reversible binary with mass action, and enzyme learning model reactions with and without decay. 

Preliminary analysis of time series plots, phase line diagrams, and phase plane plots were conducted to illustrate 

equilibrium conditions and stability of the models. Each model is examined in terms of its limitations in the 

philosophy and inability to capture certain elements that are understood about the learning process. Finally, this 

paper concludes that the feasibility of understanding behavior such as stability through the tools of applied 

mathematics and thereby illuminating certain layers of human cognition and learning is a useful tool in 

examining the suitability of a possible deterministic model that could describe the learning process. Further 

analysis with empirical data would validate the suitability of the presented models. 
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Introduction 

 

Of the many mysteries that remain, human cognition and consciousness is perhaps the most confounding one. 

Both are inextricably tied to a vast array of knowledge that is present in an individual. This knowledge, 

accumulated over the life of the individual, shapes her/his perception. In both professional and personal lives, 

decisions are based upon information at hand combined with past learning. In fact, every single advancement 

throughout the human history is largely a result of building upon the learning and discoveries that have been 
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made by others.  

 

The objective of every educational institution is to transfer knowledge and information to students through the 

process of learning so that the acquired knowledge can be translated into decisions, skills, and actions as they 

enter the workplace. As such, learning as a process is of utmost importance but is largely not well understood. It 

has easily been established that learning requires concentration, time, focused intellectual work, as well as 

mental wellbeing. Numerous mathematical models have been created that attempt to capture the learning 

process as well as the simultaneous process of forgetting (Šimon & Bulko, 2014). The aim of this paper is to 

examine the feasibility of learning models developed based on reaction kinetics using applied mathematics 

tools. Describing learning as a reaction does mimic the experience of the learner when achieving an “Aha” 

moment in understanding and offers a potential philosophical explanation for many of various variables that are 

understood to influence learning such as time, quality of instruction, motivation, genetics, and background 

knowledge. By representing learning as a process like a chemical reaction, an appropriate model could be used 

to justify incorporating problem-based learning into teaching curriculum by establishing that this learning 

strategy can function to increase long-term learning and thereby decrease the rate of memory loss. 

 

Background 

The Atkinson-Shiffrin Theory  

 

The Atkinson-Shiffrin (AS) theory of human memory is a relevant concept to learning. Developed in 1968, it 

came about in a period that is considered the ‘cognitive revolution’ due to the tremendous amount of research 

being performed in experimental psychology (Atkinson & Shriffrin, 1965; Malmberg et al, 2019). At the same 

time, there was a simultaneous interest in describing these findings related to learning and memory with the 

elegance of mathematical modeling. The premise of this learning model is related to the storage of knowledge in 

the form of memory. In essence, learning is only effective if the knowledge gained can be retained. AS theory 

provides a model of learning based upon three memory blocks: sensory registry (SR), short-term memory 

(STM), and long-term memory (LTM). This theory presents an information processing model similar to a 

computer with inputs, outputs and processes in between. Initially, sensory organs detect information which later 

enters the sensory memory. If the information is deemed noteworthy, it can enter short term memory and then 

be transferred to the long-term memory if the information is repeated. If repetition does not occur, the 

information is forgotten. Even though this model has obvious limitations, namely, it is possible to create long-

term memory without repetition, it served as a starting point to build upon to develop and refine mathematical 

models to describe the learning process as it applies to an academic setting. It is a logical conclusion to prioritize 

learning to achieve long-term memory and thereby prepare students for their careers with a strong and wide 

foundation (Malmberg et al., 2019). 

 

There have been several mathematical models that have been developed by researchers in psychology, science 

teaching, mathematics, and others with the goal of representing the learning process. However, those models are 

empirical models that were developed by fitting input variables to numerical results; therefore, they fail to 

explain physiological process that occurs when an individual learns. An advanced numerical model that can 
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represent the biochemical process is greatly needed to better understand and quantify how a unique individual 

learns. Shikaa and Ajai built upon a logistical model first presented by the AS theory by introducing the 

Hicklin’s concept of dynamic equilibrium theory to represent the concept of mastery learning (Shikaa & Ajai, 

2015; Hicklin, 1976). Bush and Mosteller proposed learning as a combination of a myriad of factors related to 

probability (2006) while Anderson recognized that there was a rate-based element of a potential learning model 

(1983). Many of these models of learning in turn motivated a response in criticism to the logic in the 

development (Burros, 1952; Preece, 1984; Fey, 1961) highlighting the difficulty in describing the learning 

process effectively. However, although an accurate model to describe learning is heretofore nonexistent, many 

researchers are still motivated that it is possible to develop one and have done so by building upon the concept 

of learning as a probability and relating it to biological processes or plateau phenomena (Burini et al, 2016; 

Ormazábal et al, 2021, Wu et al, 2020). 

 

Fredrick and Walberg presented a review of measures of instructional time as a predictor of outcomes to 

illustrate the importance of learning as a function of time in the theory of educational productivity (1980); while 

Aldridge presented a model of learning as a linear combination of independent variables (1983) using regression 

techniques and data based on the belief that students’ performance is normally distributed. Aldridge’s model 

was revised until it reached a form of a logistical model that is inherently stochastic. An empirical study that 

further inspected Aldridge’s model attested that Aldridge’s model has strengths and weaknesses common to 

many of the previous models. All these models contain some elements of learning but none of them can 

completely capture the multi-dimensional process of learning due to a lack of understanding of the biochemical 

process of learning. They also rely heavily upon empirical data for calibration rather than constants that are 

inherently deterministic (Aldridge, 1985).    

 

Reaction Kinetics 

 

Mathematical models of reaction kinetics are a powerful mathematical application involving differential 

equations that describe the basis of chemical kinetics as well as virus pathways and epidemics. Taking to heart 

the cliché that ‘life is chemistry,’ it is relevant to examine if the mechanisms that describe molecular biology 

and biochemical kinetics through processes such as enzyme kinetics or nerve signal propagation are analogous 

to the process of learning (Logan, 2013). Because reaction kinetics models have been successfully developed to 

describe several incredibly important natural phenomena, the theory of reaction kinetics is a logical approach to 

describe yet another natural phenomenon, learning.  

 

Project-Based Learning (PJBL) 

 

PJBL was developed in 1965 by 5 faculty of Health Sciences doctors led by founding Dean John Evans of 

McMaster University (Servant-Miklos, 2019). It is a learning approach in which students solve problems in 

small groups under the supervision of a tutor (Schmidt, 1993). The PJBL process is driven by the student, 

facilitated by the tutor, and is based on an educational approach where the learning is driven by problems or can 

be thought of as “learning through application”. In this approach, learners (students) are encouraged to pursue 
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knowledge by asking questions. PJBL has been regarded as a key strategy for creating independent thinkers and 

learners in the medical education community (Servant-Miklos, 2019; Schmidt, 1993, Graaff & Kolmos, 2003).  

 

Following the implementation of PJBL in the education of medicine, it has since been expanded to other fields 

and is considered a solution to some of the issues facing today’s education (Graaff & Kolmos, 2003). For 

example, faculty at Weber State University established a PJBL center to achieve a double mission of being an 

active community member and providing opportunities for engineering students to gain needed skills in problem 

solving and project management (Foss, 2021). It has been found that the PJBL learning approaches greatly 

facilitated the training in competencies related to interpersonal skills and technical aptitude, experience of 

solving real-world problems from an engineering perspective, and collaborative learning (Foss, 2020). Liu and 

coworkers successfully integrated the PJBL mode in his senior mechanical engineering classes by introducing 

more than 20 projects from industry sponsors, university research centers, and a state agency (Liu, 2017). It was 

found from Liu’s practice that the implementation of PJBL in course curricula struck the balance between 

achieving desired student learning outcomes and creating opportunities for enriching the student’s educational 

experience (Liu et al, 2011; 2017-2019). As such, by examining the success of PJBL, there is evidence that 

learning model presented by AS has an aspect of application in addition to sensory registry. 

 

Learning Models Based Upon Reaction Kinetics 

Learning as Unitary Reaction (LUR) 

 

The simplest learning model is a unitary reaction model in which a person is exposed to information, X, and 

then after a certain time, some amount of learning has occurred where knowledge now exists in the individual as 

shown in Eqn. (1).  

 

X  Knowledge                           (1) 

 

Utilizing concepts in reaction kinetics, the rate of learning is proportional to the amount of information 

presented, or r = kX where k is the learning constant for the individual. This means that information is 

‘consumed’ by the individual at the rate of -kX, as shown in Eqn. (2).  

 

                  (2) 

 

Here the “–” indicates that the information is consumed in a learning reaction. 

A function for information consumption that directly leads to knowledge can be solved from Eqn. (2) as a first 

order ordinary differential equation shown in equation 3 where Xo represents the initial conditions of knowledge 

and k represents the rate constant of information consumption.  

 

               (3) 
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This function is useful to establish a simple learning models where memory is perfect and all information that is 

presented is converted into knowledge. The LUR model also offers some expected results such as the form of an 

exponential function which indicates the rate at which learning occurs is not constant. With an examination of 

an exponential function, it can be concluded that the transfer of information into knowledge happens faster in 

the early stages of learning and slows down as time passes. This is in contrast to some research that shows a 

linear relationship between knowledge gained through learning and time (Fredrick & Walberg, 1980), but could 

be explained with the appropriate time scale. For example, an exponential function of time can be approximated 

as linear when the change in time becomes close to zero. The model of LUR is illustrated in Fig. 1, in which the 

information is consumed as a negative exponential function of time and acquired knowledge is increased as a 

positive exponential function of the time. 

 

 

Figure 1. Learning as Unitary Reaction Time Series Plot 

 

It should also be noted that the rate constant in many chemical reactions is not in fact constant and is instead a 

function of a number of variables. In the case of an individual’s learning, the rate constant shown as k in the 

model could be understood as the Arrhenius rate constant shown in Eqn. (4).  

 

          (4) 

  

Where A is the temperature independent pre-exponential factor, Ea is the activation energy for the reaction, R is 

the universal gas constant and T is the absolute temperature. By incorporating the Arrhenius rate constant into 

the LUR model, equation 5 is created. 

 

     (5) 

 



International Journal on Engineering, Science and Technology (IJonEST) 

327 

By expanding the LUR with the Arrhenius rate constant, certain elements that are understood about learning 

could be captured. The rate of learning is a function of quantities such as motivation which might include 

incentive or disincentive as well as an individual’s capacity to learn coupled with their background knowledge 

and the quality of the learning environment. While likely a learning constant would include different variable 

than the Arrhenius rate constant, there may be an analogous form that is similar. 

 

While this model is simple and easy to understand, it overlooks several significant features in a learning process. 

This model assumes that all information presented is consumed at the same rate and translated into knowledge 

and the reactions happens until all information is consumed. For example, a student may learn one topic at a 

different rate than another. The LUR model also neglects the memory loss, the counterpart of a reversible 

reaction in a chemical reaction. As such, the unitary reaction model must be expanded to consider learning as a 

binary reaction. 

 

Learning as Binary Reaction (LBR) 

 

In a binary chemical reaction, two different molecules combine to form a new product (Eqn. (6)): 

 

                             (6) 

 

Taking advantage of the AS theory, Eqn. (6) can be modified as a binary learning reaction model where Z is the 

gained knowledge; X represents the information that is gained through the senses and would include everything 

acquired from listening to a lecture to reading a text book or watching a video; and Y represents the interaction 

of the learner with the information and would include everything from solving a problem to completing a 

project following the PJBL methodology. The LBR model by nature, remains flawed because the model 

presumes that no knowledge can be gained from sensing alone and application of that information (practice) is 

necessary to be converted into knowledge. This is clearly not the case; however, this model likely does apply to 

certain fields. For example, in the practice of medicine, one may read volumes of books on surgery and observe 

others performing surgeries but likely will find that the extent of their knowledge gained from these sensing 

methods is insufficient to the practice of performing a surgery. For the quantity of knowledge to reach levels of 

mastery where one can become a professional surgeon, extensive application (practice) is necessary.  

 

By applying the law of mass action, it can be established that the rate of the reaction, or learning, is proportional 

to the product of the two reactants X and Y and the rate constant k shown in Eqn. (7) (Logan, 2013): 

 

                                    (7) 

 

The differential equations can be written by the following shown in Eqn. (8). 

 

 = – r   = – r   = – r        (8) 
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From here, several conservation laws can be developed shown in Eqn. (9).  

 

 –  = 0     +  = 0  +  = 0      (9) 

 

Which follows that , , which can be used to rewrite the differential equations with one 

unknown in Eqn. (10) and (11). 

 

 = – kXY = – kX(X-c)                      (10) 

 

        = kXY = kX(X – c)          (11) 

  

Which can be rewritten in the form of Eqn. (12) to resemble a logistic model which is consistent with many of 

the prior mathematical models on learning that have been presented.  

 

  = kcX(1 –  )             (12) 

 

where and c is the learning capacity of an individual and the term kc can be represented as the intrinsic learning 

rate. Using Eqn. (12) to solve for dX/dt = 0, the stability of the model can be seen in the generic phase line plot 

Fig. 2. The condition of zero information is unstable and the condition when the information is equal to the 

learning capacity (dX/dt = 0) is stable. The LBR model offers some advantages over the LUR model as this 

model resembles a logistic function. In the LBR model, the constant c represents the ‘carrying capacity’ or 

plateau phenomena that can be used to describe learning as a function that represents diminishing returns with 

time as has been demonstrated by other presented models (Buirini et al, 2016; Ormazábal et al, 2021; Wu et al, 

2020). 

 

Figure 2. Generic Phase Line Plot of Binary Learning for  
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There are, however, obvious limitations to the application of the LBR model. Just like the LUR model, it does 

not include a mechanism to capture the memory loss. It should also be noted that this model assumes a perfect 

translation of information into knowledge without any errors in conceptual understanding, which is counter to 

intuitive understanding of the learning process. While it does capture more that is understood about learning 

than the LUR model by including plateau phenomena, it needs to include a mechanism of memory loss through 

forgetting that can be captured as a reversible reaction. 

 

Learning as Reversible Binary Reaction (LRBR) 

 

One possible way to capture the memory loss associated with learning is to consider a reversible binary reaction. 

Using the chemistry analogy, an initial reaction of constituents X and Y forms the product Z with the rate 

constant k1 as shown in Eqn. (13). The product, is broken down into its reactant constituents by a reversible 

reaction with rate constant k-1 as shown in Eqn. (14). Utilizing the law of mass action, the rate of reaction is 

proportional to the product of the reactant concentrations as shown by Logan (Logan, 2013) thereby allowing 

for an expression of r1 and r-1 as shown in Eqns. (13, 14). Undoubtedly, this is not the real mechanism of the loss 

of knowledge but it is viable to use this mechanism to model the process of knowledge loss. In the LRBR 

model, a term k-1 is introduced, which represents the loss of knowledge or rate constant for the reversible 

reaction and would only be considered as a constant under certain situations. For example, if an individual is 

well-rested and able to focus on the information it could be expected that this constant would be comparatively 

smaller than if the individual is attempting to multi-task or ‘cramming’ in the wee hours of the evening.  

 

               (13) 

            (14) 

 

With this model, the rate equations are shown in Eqn. 15 by utilizing the property that rates add for a system of 

reactions (Logan, 2013).  

 

           (15) 

 

From which the following conservation laws can be determined as shown in Eqn. 16. 

 

        (16) 

 

Solving the differential equation shown in Eqn. (16) follows that , an expression called a 

conservation law (Logan, 2013) is created. Eqn. (17) is the conservation laws for the remaining terms.  

 

      (17) 
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These constants add new dimensions of learning because they are based upon initial conditions shown in Eqn. 

(18) at time t = 0. These initial conditions can be used to represent the background knowledge of an individual 

and the level of understanding that is present in foundational topics. They also can function as a way of 

capturing the attitude of the learner and the learner’s preferences, strengths and weaknesses in learning new 

things. These psychological factors are complicated and numerous but would build into a framework that could 

be captured with initial conditions. For example, one qualitative factor that contributes to student success is the 

feeling of belonging. If, for example, a student feels that they do not belong in the field of study, this could 

influence their ability to learn the information presented and translate it into knowledge (Inzlicht & Ben-Zeev, 

2000; Schmader & Johns, 2003, Rainey & Dancy, 2018, Inzlicht & Good, 2006). The combination of the 

constants derived from initial condition and rate constants is an innovative way of addressing the nature versus 

nurture dilemma in human behavior and development. Clearly there is a genetic component of learning captured 

by the k constants and an environmental or cultural component captured by the c constants. 

 

           (18) 

 

 The constants can be determined from the initial conditions shown in Eqn. (19). 

 

     (19) 

 

The above conservation laws shown in Eqn. (17) can be used to derive a differential equation for X and Z from 

Eqn. (15): 

 

 = – k1XY + k-1Z = – k1X(X-c1) + k-1(c2 – X)           (20) 

 

 = k1XY – k-1Z = – k1(c2 – Z)(c3 –Z) + k-1Z          (21) 

 

Analysis of Eqns. (20) and (21) have been done that illustrate the behavior of the LRBR model as shown in the 

generic phase line diagrams in Figs. 3-5. Figs. 3 and 4 show the phase line diagrams and stability for  and  

with positive c constants and Fig. 5 shows  with negative c constants. Figs. 4 and 5 can be used to understand 

how individuals with the same genetic makeup including capacity to learn and rate of learning could achieve 

knowledge in very different ways depending upon their initial conditions. 

 

Like the LBR model, as illustrated in Figs. 3 and 4, two equilibrium conditions exist in the LRBR model (Eqn. 

(20 and 21)). Of particular note is a stability condition in which the information content is equal to the capacity 

of the individual. It also can be observed that the conditions where the change in knowledge is positive or 

negative, implying a theoretical ability to optimize the rate of change of knowledge. 
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Figure 3. Generic Phase Line Diagram of Reversible Binary Learning for  with Positive c Constants 

 

 

Figure 4. Generic Phase Line Diagram of LRBR for  with Positive  Constants 
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Figure 5. Generic Phase Line Diagram of LRBR for  with Negative  Constants 

 

It is also of interest to examine the equilibrium conditions of this model. At equilibrium or  = 0, an individual 

would not be retaining any knowledge from their efforts in learning. There are likely many students throughout 

history that have experienced equilibrium conditions in their attempt to learn new knowledge. When the 

differential equation , Eqn. (20) is equal to zero Eqn. (22) is given.  

 

        (22) 

 

There are still several limitations that remain in this model and analysis. Namely, this model does not provide a 

way to identify short-term versus long-term knowledge. Also, this model cannot distinguish different methods 

of presenting the information; nor is the model able to differentiate effectiveness of differing methods of 

teaching. Thus, the LRBR model needs to be further improved to address these shortcomings. 

 

Learning as Reversible Binary Mass Action Reaction (LMAR) 

 

Building upon the limitations of the LRBR model, it is possible to continue with the reaction kinetics theory to 



International Journal on Engineering, Science and Technology (IJonEST) 

333 

model knowledge loss through the unintentional act of forgetting as well as the formation of both short-term and 

long-term memory where the knowledge is stored. These two ‘reactants’ form the reversible reaction where both 

short-term and long-term knowledge are represented by W and Z, respectively (Eqn. (23)). 

 

 with  and                    (23) 

 

In above equation, m, n, p, and q are coefficients for each term, in which m and n are related to the quantity of 

the stimulus of information and p and q denote a theoretical quantity of short term and long term knowledge that 

has been gained by the rate and reversible reaction constants k1 and k-1. Utilizing the law of mass action, the rate 

of reaction is proportional to XmYn (Logan, 2013), the following rates can be defined as shown in Eqn. (24):  

 

                 (24) 

  

From Eqn. (23), the rate equations are developed for each component,  and . 

 

  (25) 

         

The following differential equations (Eqns. (27-29) can then be obtained by substituting Eqn. (26) into Eqn. (25) 

giving the following conservation laws where s represent constants from initial conditions: 

 

X – Y = c1   X + Z = c2 Y + Z = c3 W – Z = c4 X + W = c5 Y + W = c    (26) 

 

The differential equations then are obtained as shown in Eqn. (27-29): 

 

  = – k1XmYn + k-1WpZq = – k1Xm(X - c1)n + k-1(c5 – X)p(c2 – X)q  (27) 

 

            = k1XmYn – k-1WpZq = – k1(c5 – W)m(c6 – W)n – k-1Wp(W – c4)q         (28) 

 

                = k1XmYn – k-1WpZq = k1(c2 – Z)m(c3 – Z)n – k-1(c4 + Z)pZq                 (29) 

 

A generic phase diagram (Fig. 6) was created to better understand the behavior of the LMAR model with 

positive c constants and negative c constants (Fig. 7). In this model, it is assumed at all constants are equal to 1 

and all exponents are 2.  

 

As can be seen in Fig. 6, this model presents one equilibrium condition that is stable. It also shows a very 

narrow range where the change of knowledge, ,  is positive and the total knowledge,  is positive. Figure 7 

presents one equilibrium condition that is unstable. 
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Figure 6. A Generic Phase Line Diagram of  for LMAR Model with Positive c Constants 

 

 

Figure 7. A Generic Phase Line Diagram of  for LMAR Model with Negative c Constants 

 

There exist several flaws in the philosophy of this model. Firstly, this model presumes that the short-term and 

long-term knowledge are gained concurrently, which violates the AS theory. The model also includes many 

constants, whose values are very difficult to be calibrated from empirical data. 
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Learning as Enzyme Kinetic Reaction Model (LEKR) 

 

In an enzyme kinetic model, an intermediate complex is created before the product is formed (Logan, 2013). 

This can be a useful analogous model to capture the change from information to the short-term memory 

represented by the variable W and transfer it through another process into the long-term memory represented by 

the variable Z. In this model, we assume that X represents the information that is to be consumed and Y 

represents the interaction with that information through an interaction like PJBL. In a typical reaction of a 

metabolic pathway catalyzed by an enzyme, the final product is produced and the enzyme is recovered (Logan, 

2013). In the LEKR model, it makes more sense to model the catalyst, Y, as a consumable rather than recovered 

as shown in Eqn. (30).  

 

            (30) 

 

Giving the following rates and rate equations shown in Eqn. (31, 32) from the law of mass action (Logan, 2013). 

 

     (31) 

 

           (32) 

 

Giving the following conservation laws shown in Eqn. (33): 

 

         (33) 

 

The differential equations become: 

 

        (34) 

 

      (35) 

 

             (36) 

 

The nonlinear systems of Eqns. (34-36) can be examined further with phase plane plots. For simplicity, generic 

phase plane plots are created assuming all exponents, (m, n, p) are unitary values equal to 1 as well as constants, 

ci.  While this assumption does eliminate many of the complexities of a learning model that can capture not only 

the qualities of the instruction and genetic ability of the individual, the simplification does allow for the 

evaluation of stability through phase plane plots and as a result does illuminate certain elements of the learning 

process. Figs. 8, 9, and 10 illustrate the relationship between X and W, W and Z, and X and Z respectively.  
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Figure 8. Generic Phase Plane Plot of X and W based on the LEKR Model 

 

 

Figure 9. Generic Phase Plane Plot of W and Z based on the LEKR Model 



International Journal on Engineering, Science and Technology (IJonEST) 

337 

 

 

Figure 10. Generic Phase Plane Plot of X and Z based on the LEKR Model 

 

The most interesting observation that are offered by Figures 8-10 is an examination of stability. When graphing 

parametric equations on the phase plane such as those in Eqn. (34-36), the equilibrium or steady state condition 

is represented by a critical point. By examining these diagrams from the basis of the Poincaré-Bendixson 

theorem, stability can also be observed which represents a degree of permanence in an equilibrium solution. A 

critical point is stable if all paths that are nearby remain near the point for all time t > 0 (Logan, 2013). Fig. 8 

indicates a stable node between the sensory information, X and the short-term memory, W; however, there are 

no stability points between any functions of Z, or the long-term memory. This would be supported by a 

hypothesis that forgetting is a constant process and that no knowledge can be retained indefinitely. However, 

this concept would be refuted when examined alongside research in the genetic component of trauma as some 

recent studies have suggested traumatic experiences can alter genes and be passed down (Youssef et al, 2018). 

This research would support a model that does demonstrate stability as it would indicate that some learning can 

occur on a genetic level that is beyond the time scale of the individual. This might imply that there is some 

stability in the long-term memory, Z counter to this model. 

 

Of course, this model still has its own limitations. For example, there is no process in this model that describes 

the decay of long-term memory nor is there a process in which the short-term memory is bypassed and the long-

term memory is formed initially, both of which should be represented in a learning model. However, as each of 

the models discussed in this paper build in complexity, certain elements that align with observations of the 

learning process are developed and captured.  
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Learning as Enzyme Kinetic Reaction with Decay Model (LED) 

 

Improving upon the LEKR model, a process to represent the decay of long-term knowledge is introduced in the 

learning as enzyme kinetic reaction with decay (LED) model. The process of decay, or reduction in the term, Z, 

represents long-term memory loss and is a necessary component to include in a learning model. Similar to the 

LEKR model, short-term memory is represented by the variable W and transfers through another process into 

the long-term memory represented by the variable Z. In this model, we assume that X represents the information 

that is to be consumed and Y represents the interaction with that information through an interaction like PJBL. 

In a typical reaction of a metabolic pathway catalyzed by an enzyme, the final product is produced and the 

enzyme is recovered (Logan, 2013) and the decay process generates the terms mX and nY. These terms, are not 

intended to be quantifiable or measurable but rather are defined by the rate of the increase or decrease in short 

term or long term knowledge. It is reasonable to presume that information is neither created nor destroyed nor 

consumed in the process of learning. The variables m, n, p, q, and r represent a theoretical constant that could be 

used to customize the model to genetic and environmental effects. The LED model is shown in Eqn. (36).  

 

            (36) 

 

Giving the following rates and rate equations shown in Eqn. (37, 38) from the law of mass action (Logan, 2013). 

 

     (37) 

 

     = – r1 + r-1 + r3    = – r1 + r-1 + r3   = r1 – r-1 – r2   = r2 – r3  (38) 

 

Giving the following conservation laws shown in Eqn. (39) which interestingly mimic the conservation laws in 

Eqn. (33): 

              (39) 

 

The differential equations become: 

 

             (40) 

 

                             (41) 

 

   =      (42) 

The nonlinear systems of equations (40-42) can be examined further with phase plane plots. For simplicity, 
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generic phase plane plots are created assuming all exponents  are unitary values equal to 1 as well as 

constants,  as shown in Figures 11-13.  While this assumption does eliminate many of the complexities of a 

learning model that can capture not only the qualities of the instruction and genetic ability of the individual, the 

simplification does allow for the evaluation of stability through phase plane plots and as a result does illuminate 

certain elements of the learning process.  

 

 

Figure 11. Generic Phase Plane Plot of X and W based on the LED Model 

 

The most interesting observation that are offered by Figures 11-13 is an analysis of stability. The equilibrium or 

steady state condition is represented by a critical point and stability can also be observed which represents a 

degree of permanence in an equilibrium solution. Fig. 13 indicates a stable node between the sensory 

information, X, and the short-term memory, W, similar to the LEKR model.  

 

Where the LED model diverges is obvious in the stability analysis of Figures 12 and 13. While the LEKR model 

did not offer any stable points of equilibrium, the LED model does clearly indicate the presence of a stable 

spiral in Figure 12 which indicate the presence of an imaginary component of the solution. This could be one 

possible explanation why thus far a learning model has not been developed as the examination of learning 

occurring on the imaginary plane has not been done. Most research has been limited to the Cartesian plane of 

analysis thus far. Figure 13 also indicates a stable node between X and Z.  
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Figure 12. Generic Phase Plane Plot of W and based on the LED Model 

 

 

Figure 13. Generic Phase Plane Plot of X and Z based on the LED Model 
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Conclusion 

 

Of the many mysteries that remain, human cognition and consciousness has likely been the most considered and 

studied yet remains one of the most mysterious of topics. Indeed, such a topic has been the focus of much 

research on the human brain including psychology and neuroscience and though significant advancements have 

occurred, conclusions regarding human consciousness are limited in scope. The goal of this paper is to use tools 

used in the field of applied mathematics to gain an understanding of behavior on six different theoretical 

learning models that are deterministic instead of stochastic in nature. It is the conclusion of the authors that 

perhaps we are not equipped with the suitable cognitive capacity to fully understand the mystery of life or do 

not yet have a thorough enough understanding on biological processes to create a complete mathematical model. 

As such, it is the goal of this paper to examine the possibility that the human experience could be captured in the 

language of nature; mathematics. It is possible that the experience of learning is analogous to the microscale 

processes happening within Chemistry and that learning is similar to a chemical reaction and can be modeled 

with reaction kinetics. It is possible that one could come to understand their own individual faculties and 

calibrate a model of learning so that their experience could be optimized by understanding the related genetic 

and environmental constants that are present in each of the learning models presented. As presented by Šimon 

and Bulko, our understanding of forgetting helps us understand the operation of our own brains and how the 

multitude of external variables effects the ability of our brains to process information and store it (Šimon and 

Bulko, 2014).  

 

This paper illustrated that conclusions related to equilibrium conditions and stability on six different learning 

process models are a valuable first step in the creation of a future model of the learning process. It is not the aim 

of this paper to presume that any of these models is fully correct, but instead present each as capturing some 

limited aspects of the learning process with increasing complexity. By examining each of the six models and 

highlighting shortcomings, it is possible to imagine the development of a future deterministic model that 

addresses each of these shortcomings that could be evaluated through the lens of applied mathematics. Such a 

theoretical model, based upon the understanding that the learning process is a biological process that can be 

described through chemistry could be tested with empirical data and calibrated for an individual. The existence 

of such a model would be incredibly useful to an individual in understanding their own limitations in knowledge 

acquisition but also in optimizing their learning process. The existence of such a model could also revolutionize 

the educational system as it would allow a means to quantify aspects of the learning process that have heretofore 

been impossible to measure. Such a future model is undoubtedly ambitious and rightly deserves extreme 

criticism that the existence is even possible. However, the authors conclude that undoubtedly there is a process 

in which learning occurs and although complex, it can be described in the language of mathematics and the 

development of such a model will begin with the analysis of equilibrium and stability. At this stage, conclusions 

related to learning are limited in scope and application. One of the most basic functions of humanity – our 

ability to learn, is not well understood. However, by examining six different learning models presented based 

upon a form of reaction kinetics, it is possible to understand behavior such as stability through the tools of 

applied mathematics and thereby illuminate certain layers of human cognition and learning. This analysis 

becomes the logical first step in the development of a future model of the learning process that is accurate.  
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